

HEADQUARTERS: 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230 • PHONE (410) 354-3300 • FAX (410) 354-3313

CERTIFICATE OF COMPLIANCE Certification Number: ESL105824-C810H

Company: Getac Inc.

Equipment Tested: Getac A140 Rugged Tablet Computer

Test Standard: MIL-STD-810H

Testing Completed: Jan 2017 / Oct 2019

Details: This is to certify that the following environmental tests have been performed on

the **Getac A140 Rugged Tablet Computer** and found to be in compliance with the requirements and Procedure of **MIL-STD-810H** detailed in the following

summary table.

No evidence of functional failure was observed during testing.

All calibrated Test equipment utilized during testing is maintained in a current

state of calibration per the requirements of ISO/IEC 17025:2005.

For further test details please reference the Eurofins Met Labs test report,

ESL105824-MIL.

Johnnie Evans

Manager, Environmental Laboratory

MET Laboratories, Inc.

10/29/19

Date

HEADQUARTERS: 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230 • PHONE (410) 354-3300 • FAX (410) 354-3313

CERTIFICATE OF COMPLIANCE: Certification Number: ESL105824-C810H

The table below is to show that the following environmental testing was performed on the **Getac A140 Rugged Tablet Computer** and is in compliance with the requirements of MIL-STD-810H below;

Test	Procedure Specification	MIL-STD-810H	Pass/Fail
Low Pressure	-	Reference	1 855/1 811
(Altitude) - Storage/Air Transport	Non-operating: 40,000ft (18.8kPa) with altitude change rate 2,000 ft/min.	Method 500.6 Procedure I	Pass ¹
Low Pressure (altitude) - operation/air carriage	Operating: 15,000ft (57.2kPa) with altitude change rate 2,000 ft / min	Method 500.6 Procedure II	Pass ¹
High Temperature- Storage	Seven 24 hour cycles of 33-71°C (91– 160°F) (Non- operating)	Method 501.7 Procedure I Induced A1 Hot Dry	Pass ¹
High Temperature- Operation	72 hours constant temperature exposure 63°C (145°F) (Operating)	Method 501.7 Procedure II	Pass ²
Low Temperature- Storage	72 hours constant temperature exposure -51.1° C (-60° F)	Method 502.7 Procedure I, Induced (storage and transit) C3 - Severe Cold	Pass ¹
Low Temperature- Operation	72 hours constant temperature exposure -29°C (-20° F)	Method 502.7 Procedure II	Pass ²
Temperature Shock	Multi-cycle shocks from constant extreme temperature: - 51.1°C~71°C (-60° F~160° F), temperature shock non-operating, three cycles	Method 503.7 Procedure I -C	Pass ¹
Blowing rain - Operation	Blowing rain- 5.8in/hr rain, 70mph wind, 30 minutes per surface	Method 506.6 Procedure I	Pass ¹
Rain Drip	Rain Drip, 15 minute exposure (280L/m2/hr)	Method 506.6 Procedure III	Pass ¹
Humidity- Aggravated	Ten 24-hour temperature cycles between 30°C and 60°C with relative humidity maintained at 95% RH non-operating mode	Method 507.6 Procedure II	Pass ¹
Sand and dust: Blowing dust	Dust resistance using silica flour with 6 hours at 23°C and an additional 6 hours at 63°C	Method 510.7 Procedure I	Pass ²
Sand and dust: blowing sand	Blowing sand with a sand concentration of 2.2+-0.5g/m ³ at 63°C	Method 510.7 Procedure II	Pass ²
Explosive Atmosphere	Operating for altitude 20,000 ft and temperature of 63°C (145°F)	Method 511.7 Procedure I	Pass ²
Vibration- General Vibration	Under fig 514.8 E-1 General min. integrity exposure for non-operating	Method 514.8, Procedure I, Category 24	Pass ¹
Vibration- General Vibration	Category 4, typical mission/field transportation scenario, common carrier Figure 514.8 C-2 1hr/ axis (transportation)	Method 514.8, Procedure I Category 4	Pass ¹
Vibration- General Vibration	Category 20, Ground vehicles - Ground mobile, composite wheeled vehicles, figure 514.8C-6, 2hr/ axis (Transportation)	Method 514.8 Procedure I Category 20	Pass ²
Shock- Functional shock	40g, 11ms, Terminal Saw tooth, Operating	Method 516.8 Procedure I	Pass ¹
Shock- Functional shock	Peak Acceleration of 75g's, Effective Shock duration of 8- 13ms, and cross-over frequency of 80Hz	Method 516.8 Procedure I	Pass ¹
Shock: Transit Drop	All drops performed over one unit. 26 total drops from 48 in height, free drop onto 2in of plywood.	Method 516.8 Procedure IV	Pass ¹
Shock: Transit Drop	All drops performed over one unit. 26 total drops from 72 in height, free drop onto 2in of plywood.	Method 516.8 Procedure IV	Pass ¹
Freeze / Thaw	Rapid Temperature change for 3 cycles	Method 524.1 Procedure III	Pass ¹

Note : Originally tested under MET JOB# ¹ESL93095-C810G Originally tested under MET JOB# ²ESL105315-C810G

MET Certificate Number: ESL105824-C810H